How to create a tuning parameter function

Learning objective

Build functions to use in tuning both quantitative and qualitative parameters.

Introduction

To use the code in this article, you will need to install the following packages: dials and scales.

Some models and recipe steps contain parameters that dials does not know about. You can construct new quantitative and qualitative parameters using new_quant_param() or new_qual_param(), respectively. This article is a guide to creating new parameters.

Quantitative parameters

As an example, let’s consider the multivariate adaptive regression spline (MARS) model, which creates nonlinear features from predictors and adds them to a linear regression models. The earth package is an excellent implementation of this method.

MARS creates an initial set of features and then prunes them back to an appropriate size. This can be done automatically by earth::earth() or the number of final terms can be set by the user. The parsnip function mars() has a parameter called num_terms that defines this.

What if we want to create a parameter for the number of initial terms included in the model. There is no argument in parsnip::mars() for this but we will make one now. The argument name in earth::earth() is nk, which is not very descriptive. Our parameter will be called num_initial_terms.

We use the new_quant_param() function since this is a numeric parameter. The main two arguments to a numeric parameter function are range and trans.

The range specifies the possible values of the parameter. For our example, a minimal value might be one or two. What is the upper limit? The default in the earth package is

min(200, max(20, 2 * ncol(x))) + 1

where x is the predictor matrix. We often put in values that are either sensible defaults or are minimal enough to work for the majority of data sets. For now, let’s specify an upper limit of 10 but this will be discussed more in the next section.

The other argument is trans, which represents a transformation that should be applied to the parameter values when working with them. For example, many regularization methods have a penalty parameter that tends to range between zero and some upper bound (let’s say 1). The effect of going from a penalty value of 0.01 to 0.1 is much more impactful than going from 0.9 to 1.0. In such a case, it might make sense to work with this parameter in transformed units (such as the log, in this example). If new parameter values are generated at random, it helps if they are uniformly simulated in the transformed units and then converted back to the original units.

The trans parameter accepts a transformation object from the scales package. For example:

library(scales)
lsf.str("package:scales", pattern = "_trans$")
#> asn_trans : function ()  
#> atanh_trans : function ()  
#> boxcox_trans : function (p, offset = 0)  
#> compose_trans : function (...)  
#> date_trans : function ()  
#> exp_trans : function (base = exp(1))  
#> hms_trans : function ()  
#> identity_trans : function ()  
#> log_trans : function (base = exp(1))  
#> log10_trans : function ()  
#> log1p_trans : function ()  
#> log2_trans : function ()  
#> logit_trans : function ()  
#> modulus_trans : function (p, offset = 1)  
#> probability_trans : function (distribution, ...)  
#> probit_trans : function ()  
#> pseudo_log_trans : function (sigma = 1, base = exp(1))  
#> reciprocal_trans : function ()  
#> reverse_trans : function ()  
#> sqrt_trans : function ()  
#> time_trans : function (tz = NULL)  
#> yj_trans : function (p)
scales::log10_trans()
#> Transformer: log-10 [1e-100, Inf]

A value of NULL means that no transformation should be used.

A quantitative parameter function should have these two arguments and, in the function body, a call new_quant_param(). There are a few arguments to this function:

library(tidymodels)
args(new_quant_param)
#> function (type = c("double", "integer"), range = NULL, inclusive = NULL, 
#>     default = deprecated(), trans = NULL, values = NULL, label = NULL, 
#>     finalize = NULL) 
#> NULL
  • Possible types are double precision and integers. The value of type should agree with the values of range in the function definition.

  • It’s OK for our tuning to include the minimum or maximum, so we’ll use c(TRUE, TRUE) for inclusive. If the value cannot include one end of the range, set one or both of these values to FALSE.

  • The label should be a named character string where the name is the parameter name and the value represents what will be printed automatically.

  • finalize is an argument that can set parts of the range. This is discussed more below.

Here’s an example of a basic quantitative parameter object:

num_initial_terms <- function(range = c(1L, 10L), trans = NULL) {
  new_quant_param(
    type = "integer",
    range = range,
    inclusive = c(TRUE, TRUE),
    trans = trans,
    label = c(num_initial_terms = "# Initial MARS Terms"),
    finalize = NULL
  )
}

num_initial_terms()
#> # Initial MARS Terms (quantitative)
#> Range: [1, 10]

# Sample from the parameter:
set.seed(4832856)
num_initial_terms() %>% value_sample(5)
#> [1]  6  4  9 10  4

Finalizing parameters

It might be the case that the range of the parameter is unknown. For example, parameters that are related to the number of columns in a data set cannot be exactly specified in the absence of data. In those cases, a placeholder of unknown() can be added. This will force the user to “finalize” the parameter object for their particular data set. Let’s redefine our function with an unknown() value:

num_initial_terms <- function(range = c(1L, unknown()), trans = NULL) {
  new_quant_param(
    type = "integer",
    range = range,
    inclusive = c(TRUE, TRUE),
    trans = trans,
    label = c(num_initial_terms = "# Initial MARS Terms"),
    finalize = NULL
  )
}
num_initial_terms()
#> # Initial MARS Terms (quantitative)
#> Range: [1, ?]

# Can we sample? 
num_initial_terms() %>% value_sample(5)
#> Error in `range_validate()`:
#> ! Cannot validate ranges when they contains 1+ unknown values.

The finalize argument of num_initial_terms() can take a function that uses data to set the range. For example, the package already includes a few functions for finalization:

lsf.str("package:dials", pattern = "^get_")
#> get_batch_sizes : function (object, x, frac = c(1/10, 1/3), ...)  
#> get_log_p : function (object, x, ...)  
#> get_n : function (object, x, log_vals = FALSE, ...)  
#> get_n_frac : function (object, x, log_vals = FALSE, frac = 1/3, ...)  
#> get_n_frac_range : function (object, x, log_vals = FALSE, frac = c(1/10, 5/10), ...)  
#> get_p : function (object, x, log_vals = FALSE, ...)  
#> get_rbf_range : function (object, x, seed = sample.int(10^5, 1), ...)

These functions generally take a data frame of predictors (in an argument called x) and add the range of the parameter object. Using the formula in the earth package, we might use:

get_initial_mars_terms <- function(object, x) {
  upper_bound <- min(200, max(20, 2 * ncol(x))) + 1
  upper_bound <- as.integer(upper_bound)
  bounds <- range_get(object)
  bounds$upper <- upper_bound
  range_set(object, bounds)
}

# Use the mtcars are the finalize the upper bound: 
num_initial_terms() %>% get_initial_mars_terms(x = mtcars[, -1])
#> # Initial MARS Terms (quantitative)
#> Range: [1, 21]

Once we add this function to the object, the general finalize() method can be used:

num_initial_terms <- function(range = c(1L, unknown()), trans = NULL) {
  new_quant_param(
    type = "integer",
    range = range,
    inclusive = c(TRUE, TRUE),
    trans = trans,
    label = c(num_initial_terms = "# Initial MARS Terms"),
    finalize = get_initial_mars_terms
  )
}

num_initial_terms() %>% finalize(x = mtcars[, -1])
#> # Initial MARS Terms (quantitative)
#> Range: [1, 21]

Qualitative parameters

Now let’s look at an example of a qualitative parameter. If a model includes a data aggregation step, we want to allow users to tune how our parameters are aggregated. For example, in embedding methods, possible values might be min, max, mean, sum, or to not aggregate at all (“none”). Since these cannot be put on a numeric scale, they are possible values of a qualitative parameter. We’ll take “character” input (not “logical”), and we must specify the allowed values. By default we won’t aggregate, so we are putting "none" as the first value.

aggregation <- function(values = c("none", "min", "max", "mean", "sum")) {
  new_qual_param(
    type = "character",
    values = values,
    label = c(aggregation = "Aggregation Method")
  )
}

Within the dials package, the convention is to have the values contained in a separate vector whose name starts with values_. For example:

values_aggregation <- c("none", "min", "max", "mean", "sum")
aggregation <- function(values = values_aggregation) {
  new_qual_param(
    type = "character",
    values = values,
    label = c(aggregation = "Aggregation Method")
  )
}

This step may not make sense if you are using the function in a script and not keeping it within a package.

We can use our aggregation parameters with dials functions.

aggregation()
#> Aggregation Method  (qualitative)
#> 5 possible values include:
#> 'none', 'min', 'max', 'mean' and 'sum'
aggregation() %>% value_sample(3)
#> [1] "min"  "sum"  "mean"

Session information

#> ─ Session info ─────────────────────────────────────────────────────
#>  setting  value
#>  version  R version 4.2.1 (2022-06-23)
#>  os       macOS Big Sur ... 10.16
#>  system   x86_64, darwin17.0
#>  ui       X11
#>  language (EN)
#>  collate  en_US.UTF-8
#>  ctype    en_US.UTF-8
#>  tz       America/Los_Angeles
#>  date     2022-12-07
#>  pandoc   2.19.2 @ /Applications/RStudio.app/Contents/MacOS/quarto/bin/tools/ (via rmarkdown)
#> 
#> ─ Packages ─────────────────────────────────────────────────────────
#>  package    * version date (UTC) lib source
#>  broom      * 1.0.1   2022-08-29 [1] CRAN (R 4.2.0)
#>  dials      * 1.1.0   2022-11-04 [1] CRAN (R 4.2.0)
#>  dplyr      * 1.0.10  2022-09-01 [1] CRAN (R 4.2.0)
#>  ggplot2    * 3.4.0   2022-11-04 [1] CRAN (R 4.2.0)
#>  infer      * 1.0.4   2022-12-02 [1] CRAN (R 4.2.1)
#>  parsnip    * 1.0.3   2022-11-11 [1] CRAN (R 4.2.0)
#>  purrr      * 0.3.5   2022-10-06 [1] CRAN (R 4.2.0)
#>  recipes    * 1.0.3   2022-11-09 [1] CRAN (R 4.2.0)
#>  rlang        1.0.6   2022-09-24 [1] CRAN (R 4.2.0)
#>  rsample    * 1.1.1   2022-12-07 [1] CRAN (R 4.2.1)
#>  scales     * 1.2.1   2022-08-20 [1] CRAN (R 4.2.0)
#>  tibble     * 3.1.8   2022-07-22 [1] CRAN (R 4.2.0)
#>  tidymodels * 1.0.0   2022-07-13 [1] CRAN (R 4.2.0)
#>  tune       * 1.0.1   2022-10-09 [1] CRAN (R 4.2.0)
#>  workflows  * 1.1.2   2022-11-16 [1] CRAN (R 4.2.0)
#>  yardstick  * 1.1.0   2022-09-07 [1] CRAN (R 4.2.0)
#> 
#>  [1] /Library/Frameworks/R.framework/Versions/4.2/Resources/library
#> 
#> ────────────────────────────────────────────────────────────────────
Resources
Explore searchable tables of all tidymodels packages and functions.
Study up on statistics and modeling with our comprehensive books.
Hear the latest about tidymodels packages at the tidyverse blog.